The generator matrix

 1  0  0  0  1  1  1  X  1  1  X  1  1  0  X  1  0  1  X  1  0  1  0  1  X  0  1  1  X  1  X  1  1  1  1  0  0  0  1  0  1  1  0  1  X  1  1  X  X  1  X  0  0  0  1  0  1  1  X  0  X  1  X  1  X  X  0  0  1  X  1  0  1  0  X  1  1  1  X  1  1  1
 0  1  0  0  0  0  0  0  1 X+1  1  1 X+1  1  1  X  X X+1  1 X+1  1  X  X X+1  1  1  0  0  X X+1  X  1 X+1  0  0  1  X  1  0  1  1 X+1  0  X  1 X+1  1  1  X  1  1  X  0  0  1  1  X  1  X  1  1  X  0  1  1  1  0  1  X  1 X+1  1  1  1  1  1 X+1 X+1  1  1 X+1  1
 0  0  1  0  0  1 X+1  1  1 X+1  0  0  0  1  1  0  0  0  0  X  X X+1  1  1 X+1 X+1  X X+1  1  1  1  X X+1  X X+1  0  1 X+1  0  X X+1  0  1  1  X  0  1  1  1 X+1  X  X  X  X  0 X+1  1 X+1  0  1 X+1 X+1  1  1  1  1  1 X+1 X+1 X+1  X  1  X  X  0 X+1  1  1  X  1 X+1 X+1
 0  0  0  1  1 X+1  0 X+1  0  1 X+1 X+1  0 X+1  0  1  1 X+1  1  X  X  0  0  0  0  1  X  1 X+1  1 X+1  X X+1  0 X+1  X X+1 X+1  X  0  0  1  X  0 X+1  X  1  0  1  X  1  1  1  1  0  X  X X+1  1  1  X  X X+1  0  X  X  0  0 X+1  0 X+1  X  X  0  X  1  1  1  X X+1  0 X+1
 0  0  0  0  X  X  X  0  X  X  0  X  X  0  0  0  X  0  X  0  X  0  X  0  X  X  X  0  X  0  0  0  X  X  0  0  0  X  0  X  X  0  0  X  0  X  0  X  X  X  0  0  0  X  0  0  X  0  0  0  X  0  X  0  X  0  X  0  X  0  X  X  X  0  X  0  X  0  X  X  0  X

generates a code of length 82 over Z2[X]/(X^2) who�s minimum homogenous weight is 77.

Homogenous weight enumerator: w(x)=1x^0+52x^77+81x^78+78x^79+36x^80+40x^81+63x^82+14x^83+12x^84+22x^85+35x^86+26x^87+9x^88+6x^89+4x^90+2x^91+4x^92+4x^93+1x^94+6x^95+1x^96+2x^97+5x^98+3x^102+1x^104+2x^109+2x^111

The gray image is a linear code over GF(2) with n=164, k=9 and d=77.
This code was found by Heurico 1.16 in 49.7 seconds.